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SUMMARY

The overset grid technique has been illustrated with the use of several examples. These examples include
droplet group dynamics, flow in porous media, and moving particles in pipes; the solutions have been
accurate and efficient. The overset grid technique offers the advantages of high grid quality and a natural
decomposition of multiple geometry problems onto parallel processors. For moving particles, the overset
mesh technique seems to be particularly attractive since the need for remeshing is avoided. Copyright
© 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The purpose of this paper is to simulate the steady and unsteady development of particle flows.
These types of problems are important for energy systems using spray devices, such as diesel
engines, as well as flows in porous media and for a wide range of solid particle applications in
fluid dynamics. The numerical method used in the paper is based on the Chimera or overset
grid technique, and it has proven to be efficient for these types of problems [1–4]. The present
calculations have used up to 300 particles and they have been carried out on a wide variety of
both serial and parallel computers. However, it is not possible to do a complete numerical
simulation of spray systems or porous media in the immediate future owing to the excessive
complexities that occur in practical systems. What can be accomplished is the beginning of a
physical understanding of group interactions in particle systems, and if this understanding is
used correctly the knowledge can be applied to some parts of a practical spray. It is the
authors’ belief that the main challenge of the future will be to design numerical simulations
that are reduced in scale, but yet contain the essence of the physical processes of particle
behavior.

The present results include three different fluid flows, and in the most complicated case
variable gas and liquid properties were employed, as well as finite rate chemical kinetics. We
have restricted these first studies to intermediate and small Reynolds numbers, since this
regime has, and will have, a key role in particle dynamics. The use of overset meshes has led
to a significant simplification of the mesh generation needed for groups of particles, and it
allows the use of efficient equation solvers for structured meshes. Also, the grid quality can be
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excellent since the majority of overset grids employed have been body-fitted and are orthogo-
nal near solid surfaces. Another feature of the overset grid technique is that it automatically
defines a domain decomposition scheme, and this feature has been used on parallel processors
to obtain solutions.

2. METHOD OF APPROACH AND EQUATIONS

The starting point for the investigation is the low Mach number form of the Navier–Stokes
equations in control volume form. The purpose of the low Mach approximation is to eliminate
acoustic waves and time scales from the problem, and this allows the numerical integration to
proceed at the slower time scale of the diffusion and convection processes [5]. For three-
dimensional flow with a time-dependent and accelerating mesh, the equations can be written
in the control volume integral form
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where notations are given in Appendix A.
The gas phase was assumed to obey the ideal gas law and the thermodynamic and transport

properties were obtained from the CHEMKIN subroutines [6]. The liquid properties were
obtained from [7]; however, the liquid species mass diffusion coefficients were obtained from
an assumed Lewis number and a calculated thermal diffusivity. The details of the present
formulation can be found in papers by Niazmand et al. [8] and Dwyer [9]. The numerical
methods employed for the solution of the system of equations are second-order accurate in
time and space, and they make use of a predictor–corrector scheme developed by Dwyer [5].

3. RESULTS

The paper will show three examples of the particle and droplet calculations we have
performed. These flows are (1) unsteady heating and vaporization of a droplet group; (2)
steady flow in a pipe filled with a group of spherical particles; and (3) the unsteady heating of
a spherical particle moving in a pipe flow. Each one of these flows exhibits a favorable feature
of the overset grid technique. We will now present the three examples.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 393–406 (1999)
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3.1. Unsteady heating and 6aporization of a droplet group

The first example is concerned with a group of six heptane droplets that are arranged in a
plane as shown in Figure 1 [9,10]. This figure shows the mesh’s plane of symmetry, i.e. the
plane, and there are 13 separate three-dimensional meshes. The specific meshes are the large
major mesh, the six internal droplet meshes and the six surrounding droplet meshes. The
meshes surrounding the droplets couple the flow to the outer main mesh, and interpolation is
used to connect the flow variables between the inner and outer meshes. These fine meshes
around each droplet capture the flow near the high gradient droplet surface, and they can be
considered as a viscous layer mesh. Since the calculations include mass transfer, the size of the
droplets changes in time, and a grid velocity term, Vb b, was added to the equations of motion
for all variables. For applications involving modern diesel engines, the assumption of a
spherical shape is a good one due to the small droplet size and relatively large surface tension
forces.

The droplets have an initial diameter of 50 mm, and they are injected into a hot air flow
(1000 K; 20 atmospheres). We begin the discussion early on in the simulation, and the droplets
have lost approximately 3% of their mass. The temperature and fuel mass fraction contours in
the plane of symmetry of the flow are given in Figures 2 and 3 respectively. The temperature
contours in Figure 2 show a region of cooled fluid around the droplet group which has been
extended a short region downstream by convection. The heptane fuel mass fractions contours
in Figure 3 have been limited to a maximum value of 0.25 in order that the pure fuel values
of the liquid do not dominate the presentation. At this time in the simulation, chemical
reactions in the group wake have increased the temperature above the incoming free stream
temperature of 1000 K, and the maximum temperature in the group wake is 1017 K. In
general, there is significant a penetration of fluid into the droplet group, and this can be seen
in both Figures 2 and 3. However, a deeper understanding of the fluid dynamics of the group
interaction can be obtained by studying the three-dimensional dynamic pressure field contours
on the droplet surfaces shown in Figure 4. The two front droplets have large pressures at the
front stagnation points; however, the rear droplet pressure distributions have been influenced
by the front droplets. This influence has decreased the stagnation pressure, since the velocity
inside the group is less than the free stream velocity.

Figure 1. Mesh for heptane droplet group at Re=5; P=20 bar; T=1000 K; D=50 mm; time=0.294 ms. Symmetry
plane results.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 393–406 (1999)
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Figure 2. Temperature contours for heptane droplet group at Re=5; P=20 bar; T=1000 K; D=50 mm;
time=0.294 ms. Symmetry plane results.

Further along in the simulation, approximately three times longer, there is a significant fuel
burning in the droplet wake, and the wake maximum temperature has risen to a value close to
2200 K (Plate 1). Plate 1 shows the solution at three different mesh densities, and it is clear
that the solution is converged in both space and time. It can be seen from these numerical
experiments that the trilinear interpolation used with the overset grid technique is accurate in
space, and it has not led to time-dependent phase errors in the solution. At the physical time
shown in Plate 1, the maximum and minimum mass loses for the droplets were 13% and 7%,
and the maximum gas phase fuel mass fractions have reached values of almost 0.50. It can be
clearly seen in Plate 1 that the reacting flow region has moved very close to the droplet group,
and on the bottom side of the rear droplet, it is moved into the droplet mesh. The temperature
contours in Plate 1 are dominated by the reaction zone in the wake, however, all temperatures
inside the droplet group are low. The shape of the reacting zone is influenced by the
distribution of fuel in the droplet wake, and the combustion process moves around the edges
of the group, however, the fuel richness of the wake directly behind the group delays the
forward flame propagation.

Some very important quantities for spray modeling are the droplet global coefficients, such
as drag, Nusselt number and droplet mass history for the individual droplets in a group. The
time history of the droplets drag coefficient is shown in Figure 5, and the identifying numbers
associated with the individual droplets are given in Figure 1. The influence of the group
behavior is to cause a difference in the drag coefficient of a factor of two between the droplets.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 393–406 (1999)
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Figure 3. Fuel contours for heptane droplet group at Re=5; P=20 bar; T=1000 K; D=50 mm; time=0.294 ms;
maximum mass fraction=0.25. Symmetry plane results.

The influence of the reaction zone can be seen on droplet number 6, and the increase in the
drag coefficient should be noted.

3.2. Porous media flow

The next example presented is the flow in a pipe filled with spherical particles [11,12]. A
simulation with a small number of particles is given for visual purposes in Figure 6, where 20
spheres are randomly placed in a pipe at a Reynolds number of 1. Twenty was a reasonable
number of particles to use on a single processor, however, this number changes with the
advances made in the single processor speed. The fluid is incompressible and the properties are
constant for the porous media simulations. A major complication of this flow geometry is that
the particles touch or nearly touch both themselves and the pipe wall, and this causes a
potential grid generation problem. In this study, we have chosen the outer part of the particle
mesh to fit to the neighboring particle or wall. This has the advantage that the outer mesh
fringe points have the no-slip boundary condition, and it avoids the need to interpolate values
to these boundary points. The isobars of pressure in Figure 7 show a progression from high
to low values, and the velocity vectors are quite complex due to the interactions between
particles and walls. It should be mentioned that porous media calculations of this type must
be started from a zero velocity condition, and the overall pressure drop specified. Any attempt
to start the calculation from a given mass flow yields excessive pressure gradients and
extremely slow convergence of the Poisson equation. It should be obvious that any assumption

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 393–406 (1999)
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Figure 4. Surface pressure contours for heptane droplet group at Re=5; P=20 bar; T=1000 K; D=50 mm;
time=0.902 ms.

Figure 5. Variation of normalized total drag as a function of time, Re=5, P=20 bar. The results are normalized with
a steady incompressible flow at Re=5.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 393–406 (1999)
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Figure 6. Simulation of 20 spheres in a pipe, Re=1; D/dp=1.4. Pressure isobars and velocity vectors.

for the initial velocity distribution in the porous media will lead to very large initial errors in
the Navier–Stokes equations.

The specific mesh scheme that was utilized for the porous media calculations was quite
unique for overset grid methods, and it will now be briefly described. In most overset grid
simulations, the individual meshes are generated independent of each other, as shown in Figure
1. However, for a simulation of a porous media flow, the particle density is very high and the
generation of independent meshes leads to many invalid points inside solid objects and very
poor resolution near the sphere touching locations. The actual meshing scheme used consisted
of a two-step process that first generated independent spherical meshes and then corrected
these meshes for better resolution and to remove the invalid points. The mesh correction
algorithm consisted of using a bisection algorithm to move the invalid points from outside the
pipe wall or inside a particle to the wall or particle surface. At locations near the touching of
the particles all the mesh points radial to a sphere surface are placed between two spheres, and
the mesh resolution becomes very fine. Of course, at or near a point of touching, the mesh
becomes singular and physical approximations must be employed. For example, we choose to
let the spheres touch in order to a get lower porosity, and we constrained all mesh locations
within a small angle of the touching location to have a no-slip or zero velocity condition. In
general, we have had excellent results with this procedure, and we have not had to use
numerical dissipation schemes in any of the porous media simulations.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 393–406 (1999)
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Figure 7. Simulation of 120 spheres in a pipe. Re=23; D/dp=7. Axial velocity profile.

If the number of particles is increased to 120 and the diameter of the pipe is also increased,
we obtain a simulation that is interesting to workers in the field of porous media flow, see
Figure 7 and Plate 2. In Figure 7, we show the magnitude of the axial velocity near the exit
plane of the porous media for a pipe Reynolds number of 23 based on the average flow
velocity. It is immediately evident that the velocity field varies significantly from normal pipe
flow or Darcy’s law, since the maximum velocity reaches a value greater than 16 times the
mean velocity. These maximum velocities tend to occur near the pipe wall, and this can be
shown to be a result of the random packing of the spheres near the wall. Decreasing the size
of the spheres relative to the pipe diameter will cause this effect to be less pronounced. The
pressure distributions in Plate 2 show a more regular variation compared with the smaller
number of spheres in Figure 6. It should also be noted that there are sharper gradients near
the inlet and exit of the porous media. A detailed surface plot of the exit plane axial velocity
is given in Figure 8, and it is seen that the magnitude of the velocity is variable over the entire
cross-section of the pipe.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 393–406 (1999)
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Figure 8. Axial velocity distribution in porous media. Re=23.

If the number of particles is increased to 300 and the Reynolds number varied over a
significant range, the average pressure drop in the pipe can be compared with semi-empirical
equations [13] as shown in Figure 9. In general, the numerical simulations give good results,
however, they are somewhat high in their values. Considering the limited number of particles,
and the problems of numerically packing the pipe, the results are excellent. The simulation also
has the ability to carry out sensitivity studies and to extend the work to heat and mass transfer.

The last topic to be discussed is the use of parallel processing to accomplish the calculations
presented in this paper. Shown in Figure 10 are the results of using three DEC Alpha
Workstations using a PVM system [14], and it should be noted that the computer code was
written in Fortran. Also shown in Figure 10 is the relative time per iteration of the entire mesh
as a function of the number of spherical particles. Since the individual spheres consist of
overset meshes with the same number of grid points it was not difficult to distribute the load
between processors. After the number of particles has increased to a number greater than 12,
the PVM-driven system achieves results approximating the one-half and one-third the theoret-
ical values of speed-up. The primary reason for not approaching theoretical values was the
main mesh, which was not parallelized in the simulations. For the simulations employing 120
and 300 spherical particles, the code was ported to a six processor DEC Alpha system and a
16 processor Cray T3E. The parallel performance on these platforms was similar to the results
shown in Figure 10.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 393–406 (1999)
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Figure 9. Average axial pressure in porous media. Comparison with empirical correlations for various Reynolds
numbers and porosities.

3.3. Heat transfer to mo6ing particles in pipe flow

Another flow problem where the overset approach is quite attractive is that of moving
meshes, and an interesting problem is the heating of a particle moving in a pipe. A fully
developed pipe flow subjected to wall heating is shown in Figure 11. The wall heating begins
a thermal boundary layer, and the thermal boundary layer heats a rotating spherical particle
that is moving at constant velocity in the pipe. The sphere is moving at the local mean pipe
velocity at its centroid, and the rotation rate is equal to that of the fluid. The fluid flow over
the sphere is steady; however, the heat transfer problem is unsteady. Without the use of an
overset mesh, this problem would be quite complex due to the need to remesh as the particle
moves in the pipe.

The initial conditions for the flow problem are the steady solution of the rotating
sphere–wall interaction and the thermal entrance problem in the pipe. The spherical particle
with its overset mesh is then introduced upstream of the thermal boundary layer region, and
the overset spherical mesh is passed through the pipe thermal boundary layer mesh. The

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 393–406 (1999)
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Figure 10. Parallelization study on DEC workstations.

Figure 11. Geometry of moving sphere in heated pipe.

solution procedure consists of solving the unsteady thermal energy equation between the pipe
and spherical overset mesh. A typical solution is shown in Plate 3, where the temperature
isotherms are presented at various locations down the pipe. The results in Plate 3 are for a
relatively large particle, and a pipe Peclet number of 100 based on the average velocity of the
pipe flow. The largest amount of heating occurs near the start of the thermal entrance region,
and decreases as the sphere increases in temperature. The average Nusslet number for the
spherical particle is given in Figure 12 for various Peclet numbers and size particles. In general,
the larger particles and Peclet numbers cause increased heating, however, the smaller particles
have unusual behavior as they interact with the thermal boundary layer of the pipe [14,15].

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 393–406 (1999)
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Figure 12. Average sphere Nusselt number along the pipe as a function of Peclet number and diameter ratio.

Figure 13. Sphere local friction factor as a function of angular position. Pe=100; dp/D=0.4.

In this paper we do not have time to present more detailed results, however, the entire
structure of the flow and heat transfer has been determined for the sphere and pipe surfaces.
An example of this structure is given in Figure 13, where the local skin friction on the sphere
surface is given at three angular positions. A very interesting behavior is shown where the
sphere is near the pipe wall. At this location the flow initially slows due to blockage, then it
speeds up due to a minimum area. This is followed by the flow slowing down, which is caused
by an area expansion. The real advantage of the overset approach is the good mesh quality
obtained from the simple spherical and pipe meshes. Also, the structured nature of the meshes
allows for efficient solvers and a logical decomposition for use on parallel computers.

4. FUTURE POSSIBILITIES

The present authors have good hopes for simulating much larger groups of particles and
droplets with the use of parallel processor computing techniques. The present calculations were
carried out on simple serial and parallel machine systems, and the effort needed to port the

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 393–406 (1999)
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code to a parallel machine was minimal. The use of the overset grid technique allows for a
natural domain decomposition of the particles and droplets into individual processors, and the
possibility of tens of thousand of droplets is quite feasible. With the development of faster
processors in the near future, the possibilities seem very good. However, even with this
computer power, the numerical simulations will have to be designed very carefully to get useful
statistical information. It is the authors’ opinion that only sections and important edge regions
will be able to be systematically studied, and that this information will have to be carefully
transferred to particle and spray technology.

5. CONCLUSIONS

The important conclusions of the research are
(1) The overset or Chimera grid technique has shown itself to be an efficient technique for

treating the very complicated problems of particle and droplet group interactions. The natural
decomposition of the particle and droplets into small spherical grids allows for the treatment
of large numbers, since it lends itself to future parallel processing in an efficient manner.

(2) The complex problem of group interaction between heating and vaporizing droplets has
been studied in detail. For this problem variable properties and chemical reactions where
included in the overset grid simulation.

(3) The problem of flow in porous media has been treated with the use of overset grid
techniques. Flow simulations with 300 particles exhibit the behavior of porous flows over an
important Reynolds number regime.

(4) Moving mesh problems offer excellent opportunities for overset grid techniques. The
thermal heating of a spherical particle in a pipe has been treated in an accurate and efficient
way.

APPENDIX A. NOMENCLATURE

areaAb
droplet projected areaAp

As droplet surface area
drag coefficientCD

Cp specific heat
droplet diameterD
enthalpy of species ihi

thermal conductivityk
global Nusselt numberNu
local Nusselt numberNui

flow dynamic pressurep
Reynolds number (=r�U�D/m�)Re
surface tangent vectors�

t time
temperatureT
droplet surface temperatureTs

x velocity componentu
6 y velocity component
Vb fluid velocity vector

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 393–406 (1999)
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volumedV
mesh velocity vectorVb b

Vb i diffusion velocity of species i
w z velocity component

molecular weight of species iWi

Yi= (mi/mT) mass fraction of species i
r density

stress tensort̄̄

molar production rate of species iv; i
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Plate 1. Mesh resolution study of chemical reactions.



Plate 2. Isobars for 120 spheres in a pipe. Re=23; D/dp=7.

Plate 3. Temperature isotherms vs. distance along the pipe. Pe=100; dp/D=0.4.
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